Asymmetric Motility Powered by Myo1c on Lipid Membranes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane-Bound Myo1c Powers Asymmetric Motility of Actin Filaments

Class I myosins are molecular motors that link cellular membranes to the actin cytoskeleton and play roles in membrane tension generation, membrane dynamics, and mechanosignal transduction. The widely expressed myosin-Ic (myo1c) isoform binds tightly to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] via a pleckstrin homology domain located in the myo1c tail, which is important for its ...

متن کامل

Motility powered by supramolecular springs and ratchets.

Not all biological movements are caused by molecular motors sliding along filaments or tubules. Just as springs and ratchets can store or release energy and rectify motion in physical systems, their analogs can perform similar functions in biological systems. The energy of biological springs is derived from hydrolysis of a nucleotide or the binding of a ligand, whereas biological ratchets are p...

متن کامل

Asymmetric Lipid Membranes: Towards More Realistic Model Systems

Despite the ubiquity of transbilayer asymmetry in natural cell membranes, the vast majority of existing research has utilized chemically well-defined symmetric liposomes, where the inner and outer bilayer leaflets have the same composition. Here, we review various aspects of asymmetry in nature and in model systems in anticipation for the next phase of model membrane studies.

متن کامل

Molecular roles of Myo1c function in lipid raft exocytosis

Lipid rafts are highly dynamic membrane subdomains enriched in specific protein and lipid components that create specialized 'organizing' platforms essential for an array of important cellular functions. The role of lipid rafts in membrane trafficking involves the constant remodelling of the plasma membrane through membrane uptake and balanced exocytosis of intracellular membranes. Our lab has ...

متن کامل

Asymmetric tethering of flat and curved lipid membranes by a golgin.

Golgins, long stringlike proteins, tether cisternae and transport vesicles at the Golgi apparatus. We examined the attachment of golgin GMAP-210 to lipid membranes. GMAP-210 connected highly curved liposomes to flatter ones. This asymmetric tethering relied on motifs that sensed membrane curvature both in the N terminus of GMAP-210 and in ArfGAP1, which controlled the interaction of the C termi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 2012

ISSN: 0006-3495

DOI: 10.1016/j.bpj.2011.11.3084